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Abstract
Increasing wildfire threats and costs escalate the complexity of forest fire management challenges, which is grounded in 
complex interactions between ecological, social, economic, and policy factors. It is immersed in this difficult context that 
decision-makers must settle on an investment mix within a portfolio of available options, subject to limited funds and under 
great uncertainty. We model intra-annual fire management as a problem of multistage capacity investment in a portfolio of 
management resources, enabling fuel treatments and fire preparedness. We consider wildfires as the demand, with uncertainty 
in the severity of the fire season and in the occurrence, time, place, and severity of specific fires. We focus our analysis on 
the influence of changes in the volatility of wildfires and in the costs of escaped wildfires, on the postponement of capacity 
investment along the year, on the optimal budget, and on the investment mix. Using a hypothetical test landscape, we verify 
that the value of postponement increases significantly for scenarios of increased uncertainty (higher volatility) and higher 
escape costs, as also does the optimal budget (although not proportionally to the changes in the escape costs). Additionally, 
the suppression/prevention budget ratio is highly sensitive to changes in escape costs, while it remains mostly insensitive to 
changes in volatility. Furthermore, we show the policy implications of these findings at operational (e.g., spatial solutions) 
and strategic levels (e.g., climate change). Exploring the impact of increasing escape costs in the optimal investment mix, 
we identified in our instances four qualitative system stages, which can be related to specific socioecological contexts and 
used as the basis for policy (re)design. In addition to questioning some popular myths, our results highlight the value of fuel 
treatments and the contextual nature of the optimal portfolio mix.

Keywords Forest fire management · Risk management · Multi-resource investment · Stochastic optimization · 
Socioecological context

Introduction

Ever-increasing wildfire incidence and costs have relent-
lessly been challenging forest fire management (FFM). Over 
the last decades, areas burned by wildfires have increased 
significantly, together with suppression costs (Fischer et al. 
2016; Lee et al. 2012) and other indirect societal costs (e.g., 
real estate devaluation, post-fire rehabilitation, losses in tim-
ber and non-timber products, and in recreation and tourism 
assets). More lives, natural resources (soils, watersheds, and 
other ecosystem services), and property values have been 
put at risk, and cultural resources and some ecosystems 
have been affected substantially (Schoennagel et al. 2017; 
Thompson et al. 2017). These increasing costs and threats to 
biodiversity, community safety, and human health, and the 
escalation of substantial losses are a global trend, affecting 
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Australia, the countries of North America, and the Mediter-
ranean Basin (Fernandes et al. 2016; Fischer et al. 2016; Lee 
et al. 2012; Salis et al. 2014), and raise complex challenges 
to FFM (Lee et al. 2012; O’Connor et al. 2016).

The escalating complexity of FFM is grounded in com-
plex interactions between ecological, social, economic, and 
policy factors. Fire regimes altered by changing climate 
conditions and land use—e.g., afforestation and agricul-
ture abandonment (Alcasena et al. 2016; Fernandes et al. 
2016)—interact with the expanded development of the 
wildland–urban interface (WUI), as populations grow and 
residential development increases, causing changes in fuel 
density and composition (O’Connor et al. 2016; Thomp-
son et al. 2017). In many temperate forest ecosystems, fire 
is an essential ecological process, playing a critical role in 
maintaining wildlife diversity and native plants (Fischer 
et al. 2016). Furthermore, sometimes the direction of fire 
consequences is also difficult to discern, e.g., over time, 
as sites recover from fire effects changes in value tends to 
attenuate (Thompson et al. 2017), but in the first years after 
a fire, some types of recreation activities can see their value 
increased while others can see their value decreased (Loomis 
et al. 2001). The absence of adequate policies—e.g., on WUI 
expansion (Keiter 2012), or the traditional use of fire in 
land management (Tedim et al. 2016)—or their unintended 
consequences—e.g., the “firefighting trap” of a suppression 
focused policy (Collins et al. 2013), or the fuel build-up 
in result of a mandatory aggressive fire suppression policy 
(Rönnqvist et al. 2015; Tedim et al. 2016)—spur these grad-
ually changing variables (climate change, fuel build-up, and 
human pressure) and interact with the susceptibility to rapid 
combustion, substantially increasing the stress on ecosys-
tems and the length of the fire season (Fischer et al. 2016), 
contributing to heightening the risks of wildfires for society 
and several ecosystems (Schoennagel et al. 2017; Thompson 
et al. 2017). FFM decision-making is framed by the inter-
actions between all the factors above, modulated by local 
circumstances such as the available response options and 
the relative magnitude of the uncertainties—e.g., Thompson 
et al. (2017) illustrates this context variability by comparing 
Andalusia (Spain) with Montana (USA).

Understanding how to mitigate wildfires with the avail-
able local options, in particular within the constraints of 
a limited budget, is thus an important issue. In the last 
decades, fire suppression costs have escalated rapidly 
(O’Connor et al. 2016), e.g., between 2003 and 2012, in the 
USA, comparing with the previous decade, economic losses 
doubled and suppression costs tripled (Fischer et al. 2016), 
with indirect societal costs, especially near the WUI, grow-
ing to 30 times the direct costs of firefighting (Schoennagel 
et al. 2017). The investment in fire suppression has not been 
able to decrease the number of large fires, with mega-fires 
becoming more frequent (Fernandes et al. 2016), WUI fires 

(where people and property values are at risk) account for as 
much as 95% of the suppression costs, when compared with 
remote fires (Schoennagel et al. 2017), and the synchronous 
occurrence of fires across broad geographic regions has also 
increased (Lee et al. 2012), all leading to permanent budget 
shortfalls.

Managing with a limited fire budget 
under uncertainty

Decision-makers must decide how to apply limited funds 
to an investment mix chosen from a portfolio of available 
options. Constrained by limited financial funds and faced 
with imperfect information, policy makers (PM) and fire 
managers (FM), at different levels and scales, must decide 
the most efficient and effective allocation of funds to alterna-
tive FFM choices (Pacheco et al. 2015). Limited financial 
funds require budget balancing at both policy—e.g., preven-
tion vs suppression (Collins et al. 2013) and restoration—and 
operational—e.g., equipment and human resources—levels. 
Overall, these decisions, usually made under considerable 
uncertainty, include options such as community prevention, 
fuel management, pre-suppression, suppression, and restora-
tion (Pacheco et al. 2015), and more broadly, social interven-
tions, as well as biodiversity, soil, water, ecosystems, and 
productivity conservation interventions, in the context of a 
sustainable forest management (Rönnqvist et al. 2015). Both 
PMs and FMs face difficult trade-offs in choosing among all 
of these inter-related alternatives (Thompson et al. 2017).

In the presence of uncertainty, operational flexibility is of 
great value for most FFM decisions. “Flexibility is the abil-
ity to adapt to change and may take many forms” (Chod et al. 
2010); thus, the flexible design of a system, using a range of 
alternative sources of flexibility, strengthens its capability to 
adapt to different potential future unfoldings, dependent on 
multiple sources of uncertainty, and consequently its ability 
to achieve its proposed objective (Cardin et al. 2015). It is 
precisely to address the challenges raised by the complexity 
and the large uncertainties present in FFM systems that we 
propose in this paper a Stochastic Mixed Integer Program-
ming model to study the relationship between different types 
of operational flexibility, when used to mitigate exposure to 
the highly unpredictable factors that are at the basis of most 
FFM decisions (e.g., weather, suppression performance, fire 
behavior, spread, and effects in the landscape), focusing on 
the decisions made by FMs along the year. Because of path 
dependencies, a frequent characteristic of complex engi-
neering systems (Cardin et al. 2017), we chose not to use 
Dynamic Programming. We then use the model to explore 
patterns of decisions under changes in the costs of escaped 
fires and derive implications for both FMs and PMs from 
this analysis.
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In order to explore more efficiently the design space under 
uncertainty, we adopt a screening approach (Cardin et al. 
2015). A screening model is a mid-fidelity representation of 
an entire system which includes the essential details of the 
system’s interconnected sub-domains and produces a rela-
tively stable ranking order for different strategies or design 
alternatives. Precisely because it connects the system’s sub-
domains at a mid-fidelity level, a screening model requires 
less computational and set-up time than high-fidelity but 
disconnected models in each sub-domain (Lin et al. 2009, 
2013).

Our goal specifically is to study how to manage an inte-
grated portfolio of forest fire management options along the 
fire year, under a finite budget, considering uncertainties in 
weather, economic conditions, and the impact of the differ-
ent options on each other, in order to mitigate fire effects. 
Our model focuses on a portfolio of three management alter-
natives on which FMs can apply their budget along the year: 
fuel treatment, pre-suppression planning, and suppression. 
We model this intra-annual fire management problem as a 
multistage capacity investment problem (Chod et al. 2010), 
considering a portfolio of fire management resources, and 
fires as the demand. We focus our analysis on mismatch 
risk, i.e., the risk related to the cost of supply differing from 
demand: overinvestment in fire management capacity will 
lead to costs related to unused capacity, whereas underin-
vestment will lead to costs related to not being able to satisfy 
the demand, i.e., to value loss in the forest.

Literature review

Recently, Pacheco et al. (2015) reviewed key systems created 
to support FFM decision-making, and the evolution of their 
focus from risk assessment, to risk management, to risk gov-
ernance, as a result of a simultaneous pull of methodologi-
cal progresses in risk handling and push from technological 
progress. Martell (2015) reviewed the use of operational 
research and management science in the development and 
implementation of FFM decision support systems (DSS). 
Thompson et al. (2017), in the context of large fire manage-
ment, highlight the need for a framework with the ability to 
describe credible relationships between FFM activities and 
avoided losses, to evaluate efficient strategies and the conse-
quences of suppression, accounting for factors like probabili-
ties, economic efficiency, and intertemporal feedbacks and 
trade-offs, adjustable to different socioecological contexts.

Valuable research has been carried out and published 
along the years, focusing on major aspects of FFM (e.g., fuel 
management and suppression, among others), a part of it 
explicitly exploring the trade-offs between post-fire impacts 
in valued resources and assets, and pre-fire management 
through risk mitigation investments, seeking to minimize 
FFM costs and detrimental fire impacts (Hand et al. 2014). 

In fact, there is a considerable body of fundamental literature 
concerned with the optimization, in some way, e.g., of fuel 
management, broadly speaking, or of some aspect of it, in 
particular. The same happens with suppression activities. 
Examples for the latter are the works of Calkin et al. (2011), 
Kirsch and Rideout (2003), Pacheco (2011), and Chow and 
Regan (2011), and for the former, Minas et al. (2014), Butry 
et al. (2010), and Ager et al. (2007).

Calkin et al. (2011) described how the primary compo-
nents of a geospatial DSS for wildfire suppression fit in the 
current state of art for risk assessment tools. Focusing on 
initial-attack preparedness planning, Kirsch and Rideout 
(2003) presented an integer programming model capable of 
addressing multiple simultaneous ignitions. Pacheco et al. 
(2013) proposed a discrete-event simulation optimization 
approach for the sizing of suppression systems (consider-
ing rekindles and false alarms), with the system’s “point of 
collapse” as a constrain. Chow and Regan (2011) applied 
dynamic server relocation under uncertainty to the (re-)
allocation of air tankers to bases in California, introducing 
flexibility to adapt the home-basing strategy over time by 
re-deploying air tankers within air bases as the fire season 
progresses, according to the daily changes in fire weather.

Minas et al. (2014) developed a set of integer program-
ming models to schedule fuel treatments across multiple 
periods, considering operational and ecological constraints, 
with the goal of breaking the connectivity of high risk fuel 
treatment units in a landscape, and applied them to repre-
sentative hypothetical cases. Butry et al. (2010) examined 
the trade-offs between wildfire prevention education (to 
lower ignition risk), prescribed fire (to lower ignition risk 
and burnt area), and fire suppression, seeking to minimize 
FFM costs and societal losses. Ager et al. (2007) used wild-
fire simulation methods to study the efficacy of fuel treat-
ments in decreasing the probabilistic risk of northern spotted 
owl habitat loss.

Considering the well-established interaction between fuel 
treatments and fire suppression, studies including both in the 
same model are scarce, and even more in the case of mixed 
integer programming, as in the works of Minas et al. (2015) 
or Mercer et al. (2008). The latter inspired our intra-annual 
model, which in turn modifies the standard-response model 
of Haight and Fried (2007) to include the effects of fuel 
treatments. In addition, we use insights from our previous 
studies and field work (Collins et al. 2013; Pacheco et al. 
2014a) to set up our proof of concept instances.

Haight and Fried (2007) developed a daily dispatch-
ing optimization model using a scenario-based standard 
response model with two objective functions, the number 
of (1) suppression resources deployed and (2) escaped 
fires, defined as the fires that did not receive a desired 
number of resources within a pre-defined response time. 
The expected number of escaped fires is obtained with an 
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initial-attack stochastic simulation model (CFES2) using 
the fire perimeter to determine whether the initial attack 
fails or not, assuming multiple simultaneous fires. The 
weighted sum of the two objective functions is minimized, 
and the weights are ramped to generate trade-offs between 
deployment levels and a standard response objective.

Later, with the goal of evaluating trade-offs between 
investments in fuel treatment and fire suppression 
resources, and damages from wildfire, Mercer et al. (2008) 
extended the model of Haight and Fried (2007) to include 
fuel treatments in an integer programming model. How-
ever, in this first attempt at including elements of both 
fuel management and fire suppression in their approach, 
the elements were not fully integrated, requiring one-at-
a-time adjustments of the parameters used in the model to 
incorporate the joint effect of deployment levels and the 
alternative locations of fuel treatments.

Our model extends the work of Mercer et al. (2008), 
by (a) preceding the fire scenarios (each representing the 
micro-uncertainty in fire locations during a single day) 
with a scenario tree representing intra-annual weather 
variability, (b) introducing the notion of dispatch class 
(which can include more than one type of resource), and 
(c) including the cost of fuel treatments in the objective 
function. We then minimize the sum of the investments in 
fire mitigation (fuel treatments) and suppression and the 
expected value lost as a result of escaped fires—but with 
the decisions about resource contracting and fuel treat-
ment implementation taken along the year (as the future 
unfolds and the uncertainty about the fire season sever-
ity decreases), instead of minimizing the weighted sum 
of the cost of initial-attack resource deployments and the 
expected cost of escaped fires. With the latter, the authors 
generate a trade-off curve representing the decision-
maker’s preference (minimizing initial-attack costs or 
minimizing expected escaped costs) in order to show how 
the intensity of the investment in initial attack resources 
affects the consequent cost of suppressing escaped fires, 
while we focus our analysis on flexibility (e.g., postpone-
ment of the investment in capacity) and budget balance 
(e.g., mitigation vs suppression), as weather uncertainty 
(volatility) and escaped fire losses change.

Independently, Minas et al. (2015) published a different 
approach, with a single-period integer programming model 
incorporating fuel management and suppression prepared-
ness decisions, aiming at maximizing the coverage area, 
with the main decisions being where to base suppression 
resources and undertake fuel treatments. The model does not 
directly consider a fire (spread or) escape probability, and 
instead, a pre-calculated location-specific (cell) “fire escape 
time”, defined as the time a fire takes to reach a pre-defined 
threshold size (a certain number of burnt hectares, e.g., five), 
is used to classify a fire as escaped.

As an additional contribution to the framing of our 
research in the literature, considering the enumeration by 
Rönnqvist et al. (2015) of 33 open operations research prob-
lems in forestry, our work is directly related with the 26th 
(planning for uncertainty) and the 20th (FFM tractable mod-
els), and indirectly with the 10th (coordinate and synchro-
nize a set of stakeholders with individual agendas).

The rest of the manuscript is organized as follows: the 
second section describes how we address uncertainty, 
presents our theoretical model, and introduces the set of 
instances used for the model’s proof of concept; the third 
section presents the results of the optimization analysis, 
together with the discussion of their implications; the con-
clusion, including some policy implications, is provided in 
the fourth section. All the parameters and results considered 
not to be essential for the reader are provided as electronic 
supplementary material (henceforth referred to as “supple-
mentary Table/Fig. A n ,” or just as “Table/Fig. A n”).

Methods and data

In this research, we study the relationship between three 
types of operational flexibility, when used to mitigate expo-
sure to demand uncertainty, in the context of forest fire 
management. Considering fires as the demand, we model 
intra-annual fire management as a multistage capacity 
investment problem, considering a portfolio of fire manage-
ment resources, enabling (1) fuel management and (1) fire 
suppression preparedness.

Viewing flexibility as the ability to adapt to change 
(Chod et al. 2010), we address in our analysis two types of 
flexibility:

• postponement of the commitment to each type of capac-
ity (fuel treatment and suppression preparedness), fine-
tuning the capacity mix as the year evolves, in a trade-off 
between the changing weather conditional probabilities, 
an eventual decrease in the capacity cap, and increasing 
capacity costs;

• and spatial flexibility, in a trade-off between the costs of 
different suppression resources types (e.g., helicopters 
and ground crews) and their flexibility (e.g., helicopters 
have higher flexibility than ground crews, but also an 
additional cost). In contrast to suppression resources, 
which are able to reach multiple locations, fuel treat-
ments do not feature directly spatial flexibility.

Lower up-front capacity costs and higher up-front capacity 
caps mean lower postponement flexibility (Chod et al. 2010). 
Spatial flexibility, in turn, may be measured by the ratio of 
the unit cost of the more flexible resources (the helicopter) 
to the unit cost of the more dedicated resources (the ground 
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crew). As this ratio decreases, spatial flexibility increases 
from low (only ground crews) to high (only helicopters).

About the relationship between the three sources of flex-
ibility considered in the model, we intuitively expect the 
following:

• Suppression investment postponement and suppression 
spatial flexibility are substitutes, i.e., higher (lower) post-
ponement flexibility will decrease (increase) the value of 
spatial flexibility, which is constrained to be exercised 
only at a later stage, in the beginning of the fire season.

• A direct relationship of substitution also exists between 
fuel treatment postponement flexibility and suppression 
spatial flexibility, with an argument similar to the rela-
tionship between suppression investment postponement 
and spatial flexibility.

• Higher (lower) postponement flexibility in fuel treatment 
reduces (increases) the value of suppression postpone-
ment flexibility, because each type of decision (either 
treatment locations or suppression investment), when 
occurring at a later stage, can best adapt to the other 
earlier decision.

The relative values of these three sources of flexibility will 
interact to determine which type of relationships between 
them will dominate: the direct substitution relationships or 
the indirect complementarity relationships.

In this paper, we gave priority to the study of how 
changes in the cost of an escaped fire and in the volatility of 
the demand, influence the postponement of capacity invest-
ments along the year, the total expenditures, and the invest-
ment mix. Next, we study the qualitative relations between 
the extended escape costs and the (un)balance between fuel 
treatments and suppression resource (type) investments, 
when minimizing the total system cost. With the support of 
these qualitative relations, we identify four typical socioeco-
logical contexts, each with a characteristic investment mix, 
according to the values at risk, corresponding to different 
management policies.

Our model and findings about flexibility will be mostly 
relevant for FMs, whereas the categorization according to 
the socioecological context will mostly be of interest for 
PMs.

Dealing with uncertainty

In general, fuel management (i.e., controlling flammability 
through fire, mechanical, chemical, biological, or by manual 
means) and fire suppression preparedness or pre-suppression 
planning (e.g., recruiting and training, equipment and sup-
plies procurement, mutual aid agreements negotiation) make 
up the portfolio of management alternatives that FMs can 
apply their budgets to along the year. The decisions about, 

e.g., where and when to apply fuel treatments and locate 
suppression resources, and about the level, timing, and mix 
of suppression resources contracted, condition the success of 
suppression (i.e., the work of extinguishing a fire, beginning 
with its discovery) and thus the burnt area, later in the fire 
season. All these decisions and their outcomes interact with 
each other and are made under uncertainty.

In our model, the uncertainty in the demand has two ori-
gins: (1) the intra-annual weather variability, which leads to 
oscillations in the overall severity of the fire season and (2) 
a confluence of micro-scale factors (micro-uncertainty) that 
lead to uncertainty in the occurrence, time, place, severity, 
and escape probability of specific fires.

The uncertainty related to intra-annual weather variability 
is modeled with a scenario tree, similar to the one displayed 
in Fig. 1. In this case, the structure of the tree considers 
the conditions for the winter, spring and summer seasons, 
as well as different conditions for the Fire Weather Index 
(FWI), with the corresponding conditional probabilities. 
Each leaf node in this part of the tree corresponds to a fire 
season scenario. Each scenario consists of the path between 
the root of the tree and a leaf node.

The micro-uncertainty is modeled with a spatial grid of 
forest districts, each characterized by an ignition probability. 
One such matrix, similar to the one presented in Fig. 2, will 
characterize each fire season scenario. From each of these 
matrices, multiple fire scenarios will be derived, which will 
become the ultimate leaf nodes of the scenario tree.

The uncertainty is thus modeled jointly (Fig. 3) with a 
scenario tree for the part related to intra-annual weather vari-
ability and a spatial grid of forest districts (each character-
ized by a maximum ignition probability) for the part related 
to micro-uncertainty. These probabilities can be obtained 
from historic data or expert elicitation (the values in the 
figures are merely illustrative).

Model formulation

Our formulation of a stochastic integer programming model 
for fuel management planning and intra-annual suppres-
sion preparedness is presented below. We consider a land-
scape divided into a number of cells representing candidate 
locations for fuel treatment, potential temporary bases for 
suppression resource deployment, and potential fire loca-
tions. The shape and size of these cells does not need to 
be uniform, and indeed the landscape partition should be 
done on logical fuel treatment units. The main decisions to 
be considered are where and when to apply fuel treatment, 
where to locate temporary suppression bases, and how many 
resources to contract of each type, and when. The model 
uses an explicit tree structure, with each node modeled 
uniquely, as part of the tree, and scenarios modeled as paths 
in the tree from the root node to a leaf node, i.e., as subsets 
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of nodes, thus not requiring non-anticipativity constraints. 
The model is formulated with the following notation:

Indices and sets:

i, I index and set of potential fire stations;
j, J index and set of potential fire locations;
k,K  index and set of suppression resource dispatch 
classes (class 0 is no resources dispatched);

r,R index and set of types of suppression resources;
q,Q index and set of types of treatment (0 or 1);
n,N  index and set of nodes in scenario tree;
Pn path in the scenario tree from the root node (n = 0) 
to the parent of node n;
s, S index and set of fire season scenarios, i.e., parents 
(direct ancestors) of the leaf nodes in the scenario tree;

Fig. 1  Scenario tree—part related to intra-annual weather variability. n�, n� + 1,⋯ , n� + m are m + 1 nodes that share a same immediate ancestor, 
each with an assigned probability such that pn, + pn,+1 +⋯ + pn,+m = 1

Fig. 2  Scenario tree—part related to the micro-uncertainty in fire occurrence, location, and severity
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s′, S′ index and set of fire scenarios, i.e., leaf nodes in 
the scenario tree
A set of season scenarios, i.e., (all) ancestors to the leaf 
nodes in the scenario tree (decision nodes);
an parent (direct ancestor) of node n.

Parameters:

c1
rn

 cost of contracting one unit of resource type r in 
node n;
c2
i
 fixed cost of opening a station at location i;

c3
j
 extended cost of an escaped fire (including lost value 

and restoration) at location j;
c0
jn

 annualized cost of treating location j in node n;

fjs′ binary parameter; 1 if fire occurs in location j in fire 
scenario s′ , 0 otherwise;
pn probability of node n;
Mir upper bound on the number of suppression resources 
of type r deployed at station i;
B budget
Tn upper bound on the number of treatments that are 
possible at decision node n;

drk number of resources of type r deployed in dispatch 
class k ( dr0 = 0);
vqjks probability of escape for a fire in location j in fire 
season scenario s under dispatch class k and treatment q 
( vqj0s = 1);
Orij set of stations i from where resources of type r 
can reach location j within the maximum permissible 
response time.

Variables:

urn number of suppression resources of type r contracted 
in node n;
xirs number of suppression resources of type r deployed 
at station i in fire season scenario s;
yijrs′ number of suppression resources of type r dispatched 
from station i to location j in fire scenario s′;
tjn binary variable; 1 if location j is treated in node n , 0 
otherwise;
wias

 binary variable; 1 if station i is open in season sce-
nario as , 0 otherwise;
zqjks′ binary variable; 1 if dispatch class k is used at loca-
tion j in fire scenario s′ under treatment q , 0 otherwise;

Fig. 3  Model uncertainty overview: scenario tree joining intra-annual weather variability with micro-uncertainty
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bs budget allocated to treatments, suppression resources, 
and opening of stations in season scenario s

Our objective function (1) consists of the minimiza-
tion of the expected value of the investment mix and the 
escape costs. The budget allocated to treatments, suppres-
sion resource contracting, and opening of temporary sta-
tions in new locations, by fire season scenario, is defined in 
Eqs. (2). Multiplying the investment mix by the probability 
of each fire season scenario, we obtain the expected value 
of the investment mix. For each location, if a fire occurs, 
we have an escape probability according to the fuel treat-
ment applied, the suppression class dispatched, and the fire 
scenario, and also the extended cost of an escaped fire at 
that particular location. By adding, for all locations, the 
product of the escape probability by the extend cost of such 
escape we evaluate the costs of all escapes under each fire 
scenario. Finally, with the probability of each fire scenario, 
we obtain the expected value of the extended cost of all 
escapes. As the escape costs under each fire scenario depend 

(1)Minimize
∑

s∈S

psbs +
∑

s�∈S�

∑

j

∑

q

∑

k

ps�fjs�vqjkas� c
3
j
zqjks�

(2)

Subject to ∶

∑

n∈Ps

∑

j∈J

tjnc
0
jn
+

∑

n∈Ps

∑

r∈R

urnc
1
rn
+ wias

c2
i
= bs ∀s ∈ S

(3)bs ≤ B ∀s ∈ S

(4)xirs ≤ Mirwias
∀s ∈ S, i ∈ I, r ∈ R

(5)
∑

i∈I

xirs ≤
∑

n∈Ps

urn ∀s ∈ S, r ∈ R

(6)
∑

j∈Ori

yijrs� ≤ xiras� ∀s� ∈ S�, i ∈ I, r ∈ R

(7)
∑

i∈Orj

yijrs� =
∑

k∈K

∑

q∈Q

zqjks�drk ∀s� ∈ S�, j ∈ J, r ∈ R
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)

(9)
∑
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tjn ≤ 1 ∀s ∈ S, j ∈ J

(10)
∑
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∑
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tjn ∀s� ∈ S�, j ∈ J

(11)
∑

k∈K

z1jks� =
∑

n∈Pas�

tjn ∀s� ∈ S�, j ∈ J

on the investment mix for the corresponding fire season sce-
nario, we define our objective function as the sum of the two 
expected values, which we want to minimize.

Constraints (3) define budget limits (for any season 
scenario) and constraints (4) upper bounds on resources 
deployed, by location, season scenario, and resource type. 
Please note that the location of the temporary fire stations 
is chosen in as , the parent (direct ancestor) of node s . Once 
the decision is made, the stations remain open in the fire 
season scenario s.

The overall suppression capacities, by season scenario 
and resource type are defined in constraints (5), which ensure 
that the overall suppression capacity (sum of resources, by 
each type, deployed to all the stations) does not exceed the 
actually contracted suppression resources (of that type), in 
each season scenario. The decision to contract resources is 
only possible along the path in the scenario tree, from the 
root node to node s , i.e., in the decision nodes of the season 
scenarios except the last (node s or the fire season scenario).

Constraints (6) define the dispatch capacities, by station, 
fire scenario and resource type: the suppression resources 
(of each type) deployed at each station in the corresponding 
season scenario limit the sum of the resources dispatched to 
all the fires covered by that station (in each fire scenario). 
This formulation of the dispatch capacity constraint contains 
an implicit worst-case assumption for each season scenario, 
in the sense that the decisions cover the simultaneous occur-
rence of the maximum number of fires in all the cells cov-
ered by each particular station, in every fire scenario of each 
season scenario. The use of the maximum number of fires 
is a very conservative approach and can lead to overinvest-
ment. As an alternative, in practical applications, it would 
be advisable to use measures such as the Value-at-Risk or 
the Conditional Value-at-Risk (also known as “Conditional 
Tail Expectation”) for a given probability.

Our model assumes that FMs at the fire incident com-
mand and control level can define a set of initial-attack dis-
patch policies or “dispatch classes”, which, according to the 
fuel load and the meteorological conditions in a certain loca-
tion, feature an associated probability of escape for a fire in 
that location. Constraints (7) define the dispatch demand, 
by location, fire scenario, and resource type. In every fire 
scenario and location, the total suppression resources of each 
type, dispatched from any station that covers that location 
(left hand side) must equal the total resources of that type 
involved in the dispatch class (equation right side) actually 
employed for that location. When the probability of escape 
cannot be estimated from historical data (e.g., due to insuf-
ficient data for all combinations, in the presence of new 
dispatch policies), expert elicitation is an alternative to be 
considered.

The number of treatments that can be performed at each 
node along the fire season can be limited by several reasons 
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(e.g., existing equipment, specialized personal availability); 
thus, constraints (8) define an upper bound (maximum) on 
the number of treatments that can be done, considering all 
the landscape (all locations), at each node of the alternative 
scenarios under consideration. Furthermore, constraints (9) 
assure that each location cannot be treated more than once, 
in each alternative season scenario. Because our model is 
intra-annual, we are interested in the short-term effect of fuel 
treatments. However, as fuel treatments have a multi-year 
impact, the cost of treatments in c0

jn
 is annualized.

Finally, constraints (10) and (11) impose that only one 
dispatch class is assigned to each location under a fire sce-
nario and set the appropriate corresponding fuel treatment 
status. In both constraints, the right-hand side imposes that 
only one dispatch class is assigned to each fire location. In 
addition, for each fire scenario, constraints (10) set a no fuel 
treatment status for locations that did not receive any fuel 
treatment along the year for the corresponding fire season 
scenario. The same holds for treated locations in constraints 
(11).

Model proof of concept

To demonstrate the types of analysis that our model enables 
and carry out our two studies on the role of flexibility and 
socioecological contexts, we synthesized an appropriate 
25-cell test landscape, that we then used with several values 
for the extended cost (direct and indirect values lost and 
restoration costs) of an escaped fire. We considered values of 
4 and 12 million euros for the study on the role of flexibility 
and values from 0 to 20 million euros for the study on socio-
ecological contexts (further details are provided in “Invest-
ment mix, volatility, EFeC , and flexibility” and “Investment 
mix and socioecological contexts” sections, respectively).

The dimension of the test landscape and the parameteriza-
tion of the costs were inspired in the case of Portugal, where 
forest fires are a critical problem. They account for more 
than half of the fires in the EU Mediterranean region (San-
Miguel-Ayanz et al. 2013), and over the years, the conse-
quences of forest fires in the country have been particularly 
severe, with successive catastrophic fire seasons. In half of 
the past thirty years (1987–2016), the total burnt area was 
larger than 110,000 ha, and in 2 years it was larger than 
310,000 ha—please see the work of Fernandes et al. (2016) 
on extremely large (≥ 2500 ha) fires in the country between 
2003 and 2013. Every year, on average about 2.5% of forest-
land is burnt, with total direct losses near €250MM, and 
more than €120MM spent in fire prevention and suppres-
sion (Pacheco and Claro 2014). Worse than the ecological 

and economic losses, almost every year there are casualties1 
resulting from forest fires.

In the remainder of this subsection, following an over-
view of the values of the parameters for the test landscape, 
summarized in Table 1, we detail the parameterization of the 
(a) scenario tree, (b) dispatch classes, and (c) costs.

Scenario tree parameterization

The instances used for the proof of concept have four deci-
sion stages, with two or three branches for each node of 
the scenario tree (please see Fig. 4) and Table A4, with the 
overall season probabilities). The stages correspond roughly 
to the seasons of the year, except for the last stage, for which 
the micro-uncertainty is modeled using four fire scenarios 
for each season scenario. Furthermore, we chose not to con-
sider any decisions in the fall season.

Our model was designed for a worst case in which the 
suppression resources are needed to attend the maximum 
possible number of fires simultaneously. A rapid, aggressive, 
and vigorous initial attack—a policy that has been followed 
in Portugal (Pacheco et al. 2014a)—can prevent an ignition 
from becoming a large fire with associated substantial costly 
damages (Parks 1964). The initial attack can be generally 
defined as the first 1–8 h (90 min, in Portugal) of the fire 
suppression effort, when the fundamental objective is the 
containment in the shortest possible time of the fire at a 
small size, by using ground crews (fire engines, hand crews, 
and eventually bulldozers) and aerial means (e.g., water-
dropping helicopters) (Lee et al. 2012).

The unconditional probability of ignition decreases from 
north-west to south-east in all fire scenarios (Fig. 5). For 
each of the 12 fire season scenarios, we generated four fire 
scenarios with the same probability (25%), obtaining a total 
of 48 season scenarios (probabilities in supplementary 
Table A4). For proof of concept purposes, we constructed 
the fire scenarios in order to obtain the same average, but dif-
ferent standard deviations, for the total number of ignitions 
(the detailed maps of ignitions, for each of the 48 fire scenar-
ios, are provided in supplementary Table A5 and Table A6).

Dispatch classes parameterization

The fire escape probability is influenced by the season sce-
nario, namely by the FWI (in the last stage, the fire season 

1 For example, in June 17, 2017, five escaped fires that later became 
one large fire in the center of Portugal caused 64 deaths and more 
than 250 injuries. With a total burnt area of about 46,000  ha (e.g., 
“Pedrogão Grande”, one of the seven severely affected municipalities, 
had its forest reduced by 82%); the fire destroyed over 491 houses 
and jeopardized 49 companies, causing estimated losses of €497MM 
(CCDRC 2017).
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scenario), in addition to the class of suppression resources 
dispatched, and the fuel treatment of the cell where the fire 
occurs, as detailed below in this section. Ceteris paribus, a 
fire in a season with the highest FWI has an escape prob-
ability that is twice the escape probability for the same fire 
in the season with the lowest FWI, and in the season with 
moderate FWI, the escape probability increases by a factor 
of 1.3 relative to the season with the lowest FWI (please see 
supplementary Table A3).

In all instances, we defined two dispatch classes, k = 2 
with one helicopter and two ground crews, and a less 

effective k = 1 with only (six) ground crews. The effec-
tivenesses were defined by the escape probability, which 
increases 5 times if dispatch class 1 is used instead of 2 (sup-
plementary Table A3). If there are no suppression resources 
available to attend a fire, the escape probability is 1 ( k = 0 ). 
Helicopter and ground crews have different spatial flexibil-
ity, determined by a threshold of 15 min of travel time, con-
sidering speeds of 170 and 40 km/h, respectively. Figure 6 
shows three examples of resource coverage.

Table 1  Test landscape parameter values

Parameters Values

Set of cells and of potential fire stations: I 25 cells (5 × 5 grid), with 10 by 10 km each
Set of potential fire locations: J Matches the set of cells I
Set of suppression resource dispatch classes: K Two classes (and class 0, for no resources dispatched)
Set of types of suppression resources: R Two types (helicopters and ground crews)
Set of types of treatment: Q Treatment/no-treatment (1/0)
Set of nodes in scenario tree: N #N = 70 (please see Fig. 4)
Set of fire season scenarios: S #S = 12 (please see Fig. 4)
Set of fire scenarios: S’ #S� = 48 (please see Fig. 4)
Set of season scenarios (decision nodes): A #A = 10 (please see Fig. 4)
Cost of contracting one unit of resource type r in node n : c1

rn
€700,000 and €22,000 for aerial and ground crews, respectively; 

increasing 4% at each decision stage along the branch but equal in 
parallel nodes

Fixed cost of opening a station at location i:c2
i

€8000 (temporary stations) for any location
Extended cost of an escaped fire (containing, lost value and restora-

tion) at location j : c3
j

Equal in all locations; 4 and 12 million euros (Table 2, 3, supplementary 
Table A1 and A2) for the study on the role of flexibility, and from 0 to 
20 million euros (Fig. 9 and 10) for the study on the socioecological 
contexts—details in Investment mix, volatility, EFeC , and flexibility” 
and “Investment mix and socioecological contexts” sections

Cost of treating location j in node n : c0
jn

€100,000 increasing 4% at each decision stage along the branch but 
equal in parallel nodes for all locations

Ignitions location (binary); 1 if fire occurs in location j in fire scenario 
s′ , 0 otherwise: fjs’

Ignitions location probability decreases from north-west to south-east in 
all fire scenarios; two distributions with the same average, but differ-
ent standard deviations, for the total number of ignitions – details in 
Fig. 5, Table A5, and Table A6

Probability of node n : pn Please see Fig. 4)
Upper bound on the number of suppression resources of type r 

deployed at station i : Mir

Not limited (large number: 5000 in each location)

Budget: B Not limited (large number: €99,999,000)
Upper bound on the number of treatments that are possible at decision 

node n : Tn

Not limited (large number: 50 for 25 maximum possible locations, in 
each decision node)

Number of resources of type r used in a k dispatch class ( dr0 = 0 ): drk Helicopters/ground crews: 1/2, 0/6 and 0/0 for classes 2, 1, and 0, 
respectively

Escape probability for a fire in location j in season scenario s under 
dispatch class k and treatment q ( vqj0s = 1 ): vqjks

Same in all locations and all scenarios; always 1 for dispatch class 0 by 
definition; decreases by a half if a cell is treated, and a fifth if class 2 
(instead of 1) is dispatched; as the FWI goes from “low” to “medium” 
or “high”, the escape probability grows by a factor of 1.3 or 2, respec-
tively—please see Table A3

Set of stations i from where resources of type r can reach location j 
within the maximum response time: Orij

Helicopters and ground crews cover the cell where they are located and 
all cells reachable within 15 min of travel time at a speed of 170 and 
40 km/h, respectively—please see Fig. 6
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Fig. 4  Scenario tree used in the model proof of concept (please see also supplementary Table A4)

Fig. 5  Representation of the two sample (unconditional) probability distributions used to generate ignition locations (Table A5 and Table A6, 
respectively), with the same average, but different higher (left) and lower (right) volatilities, for the fire scenario total number of ignitions ( fstni)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

6 7 8 9 10 6 7 8 9 10 6 7 8 9 10 Resource location

11 12 13 14 15 11 12 13 14 15 11 12 13 14 15 Cell covered

16 17 18 19 20 16 17 18 19 20 16 17 18 19 20 Cell not covered

21 22 23 24 25 21 22 23 24 25 21 22 23 24 25

Fig. 6  Suppression resource 15 min ranges (examples): cells covered by ground crews located in cells 11 and 9 (left) and cells covered by a heli-
copter located in cells 11 (middle) and 1 (right)
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Costs parameterization

The test landscape was built using realistic values. The costs 
were inspired by the Portuguese case, and the dimension 
of the test landscape specifically by the district of Porto, 
analyzed in two previous published studies (Pacheco et al. 
2014a, b).

For the cost of contracting aerial resources ( r = 1 ), we 
considered the unit cost of renting a helicopter during the 
entire season (i.e., the 92 days from the beginning of July 
to the end of September) including 635 h of flight at a cost 
of €788/h (an average utilization of about 7 h per day) and 
a fixed cost of €200,000, obtaining the total of €700,000. 
Renting a helicopter fleet, instead of purchasing, is a com-
mon practice in Portugal, both by public authorities and pri-
vate companies (e.g., pulp and paper companies which own 
large areas of planted eucalyptus forests). For the unit cost 
of contracting ground crews ( r = 2 ), we considered teams of 
five firefighters, also during the entire fire season, at a cost 
of €240 per day, obtaining the rounded total of €22,000. 
Each crew operates a truck with a small water tank which 
is not included in our cost calculations as we assume a pre-
existing truck fleet, as is usually the case in Portugal. Both 
costs increase 4% at each decision stage along the year (i.e., 
winter, spring, and summer), similarly for all the nodes at 
the same level of the scenario tree.

Because fire stations are located in populated areas, the 
temporary relocation of fire crews to strategic locations in 
forested areas is a common practice. That is the reason why, 
for the fixed cost of opening a temporary station, we con-
sidered an expenditure of €2500 for its preparation, and a 
maintenance cost of €60 per day, obtaining a rounded total 
of €8000. These costs are assumed to be the same in all cells 
and do not change along the year.

We considered the same treatment cost for all locations 
and assumed that the effects of the treatments last 4 years, 
annualizing the cost at 25% per year. With an area of 

10,000 ha per cell of our test landscape, assuming that on 
average only 10% need to be treated, i.e., 1000 ha, at a cost 
of €400 per hectare, the total treatment cost for each cell is 
€100,000. The evolution of this cost along the year is iden-
tical to the evolution of the cost for suppression resources. 
Treatments also influence the escape probability, by decreas-
ing it to half (please see supplementary Table A3).

Finally, for the escape fire cost (EFC), we considered an 
overall value that includes several fire-related losses (e.g., 
timber and non-timber products, recreational activities, 
indirect use, and other values of non-market resources), 
which we named “escaped fire extended cost” (EFeC). We 
assumed that an escaped fire would burn 20% of the area of 
the cell, and that half of the value of the burnt area would be 
lost. Thus, e.g., for a hectare value of €2000 (€0.2/m2), the 
cell value is €20,000,000 and an escaped fire would cause 
an EFeC of 2000 M/cell (where “thousands of euros” are 
denoted simply by “M”). Similarly to other costs, we con-
sider the EFeC to be identical in all locations.

Results and discussion

In addition to how much should be invested, in what options, 
and when (according to the evolution of weather conditions), 
the model’s spatially explicit solutions (Fig. 7) indicate 
where the investments should be carried out, except for the 
temporary fire stations, whose locations, wias

 are decided at 
the last moment (Summer; Fig. 4).

In this section, the escaped fire extended cost (EFeC) is 
assumed to be the same for all the cells of the test landscape, 
i.e., c3

j
 , which for simplicity we denote c3 , is the same in all 

locations, and thus, EFeC = c3.
In “Investment mix, volatility, EFeC , and flexibility” sec-

tion, we start by analyzing how changes in EFeC and in the 
volatility of the demand (total number of ignitions in the fire 

Fig. 7  Spatial view of the solution for branches 1–3, for an escaped fire extended cost (EFeC) of 12,000 M, with lower volatility in the set of fire 
scenarios (see Table 3). For the solution with higher volatility, please see supplementary Fig. A1
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scenarios) influence (1) the postponement of capacity invest-
ments along the year, (2) the total expenditures, and the (3) 
investment mix. The observation that the budget increases 
about proportionally to EFeC leads us to further exploring 
this issue later; in “Investment mix and socioecological 
contexts” section, we analyze the behavior of the system in 
the presence of different values at risk, i.e., different EFeC 
values, related with different socioecological contexts. More 
specifically, we analyze how the balance between prevention 
and suppression in optimal budgets behaves as a function 
of EFeC.

Investment mix, volatility, EFeC , and flexibility

To model the volatility in weather conditions, we maintain 
the probabilities associated with the intra-annual weather 
variability, and change only the segment of the 48 fire sce-
narios (the ultimate leaf nodes of the scenario tree), i.e., the 
micro-uncertainty (in fire occurrence, location, and severity) 
associated with the 12 fire season scenarios. As mentioned 
previously (in “Model proof of concept” section), the total 
number of ignitions in the fire scenarios feature the same 
average (13.5 ignitions per fire scenario) but different stand-
ard deviations: in the lower (higher) volatility case, the total 
number of ignitions in the fire scenarios varies between 8 
and 19 (2 and 25), with a standard deviation of 2.84 (5.71)—
supplementary Table A5 and Table A6 show the locations 
of the ignitions for each fire scenario, for the higher and 
lower volatility cases, respectively, and Fig. 5, left and right 
respectively, the two sample (unconditional) probability dis-
tributions that generated them.

In this subsection, we use two values for the EFeC, 4 and 
12 million euros (4000 M and 12,000 M, with “M” denoting 
thousands of euros) which we name C4 and C12, respec-
tively. We have thus four instances—C4L, C4H, C12L, and 

C12H, with L and H standing for the low- and high-volatility 
cases, respectively.

From the “Spring” decision stage to the “Summer” deci-
sion stage, there is only one branch (Fig. 4) and an increase 
of 4% in costs (please recall the c1

rn
 parameterization for the 

model proof of concept in Table 1). Thus, there are no deci-
sions in the latter, only in “Winter” and in “Spring”—the 
information available in “Spring” is the same as in “Sum-
mer” and the decisions can be made at a lower cost.

In addition, in the alternative branches (Fig. 4) shar-
ing 1 (2) as the first decision node, i.e., in the paths start-
ing with 1–3 (2–5) and 1–4 (2–6), the latter represent 
less hazardous situations than the former. Fire scenarios 
35–46 (59–70) feature less ignitions than fire scenarios 
23–34 (47–58)—please see supplementary Table A5 and 
Table A6—and thus no decisions are made in node 4 (6). 
Accordingly, for the main text, from the initial alternative 
branches we focused our attention only on the paths start-
ing by 1–3, i.e., 1–3–7–11–23[to 26], 1–3–7–12–27[to 30], 
and 1–3–7–13–31[to 34] (and present in the supplementary 
material the results of the paths starting with 2–5).

The results for branch 1–3 can be seen in Table 2, for C4L 
and C4H, and Table 3, for C12L and C12H. (For branch 2–5, 
the results are presented in the supplementary Table A1, for 
C4L and C4H, and Table A2, for C12L and C12H.)

I. How volatility in the demand and EFeC influence 
the timing of capacity investment

The study of the evolution of investment decisions along 
the year confirms what was intuitively expected: ceteris 
paribus, for a higher (lower) volatility in the weather condi-
tions, i.e., a higher (lower) uncertainty about the future, a 
higher (lower) proportion of the total optimal investment 
is postponed. Indeed, e.g., for C4, in branch 1–3 (Table 4), 

Table 2  Budget allocation (absolute and percentage) for an escaped fire extended cost (EFeC) of 4000 M, with low and high volatility in the set 
of fire scenarios, overall and per decision node (Winter and Spring)—branch 1–3 (for branch 2–5, please see Table A1)

Portfolio options Volatility

Low High

Winter [1] Spring [3] Total Winter [1] Spring [3] Total

Fuel treatments 16 2 18 19 4 23
Suppression (ground crews) 102 12 114 126 24 150
Suppression (helicopters) 0 0 0 0 0 0
Fire stations 5 1 6 6 1 7

Investment balance (%) Bdgt Prt (%) Investment balance (%) Bdgt Prt (%)

Fuel treatments 88 12 41.3 82 18 40.7
Suppression (ground crews) 89 11 58.7 83 17 59.3
Suppression (helicopters) - - - -
Fire stations 83 17 86 14
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with a lower volatility, the percentage of the total invest-
ment (prevention and suppression) postponed to the Spring 
is 11.2% ( 490, 560∕4, 374, 560 ), whereas with a higher vola-
tility it is 17.1% : a high/low volatility postponement ratio 
of 1.52 ( 17.1%∕11.2% ). From C4 to C12, the EFeC triples 
and the total investment about triples also, from 4375 M 
(Table 4) to 14,216 M (Table 5), and from 5693 M (Table 4) 

to 17,319 M (Table 5), for the lower and higher volatilities, 
respectively. In this case, the pressure to postpone the invest-
ments increases, as shown by the increase in the postpone-
ment ratio from 1.52 to 1.64.

Table 3  Budget allocation (absolute and percentage) for an escaped fire extended cost (EFeC) of 12,000 M, with low and high volatility in the 
set of fire scenarios, overall and per decision node (Winter and Spring)—branch 1–3 (for branch 2–5, please see Table A2)

Portfolio options Volatility

Low High

Winter [1] Spring [3] Total Winter [1] Spring [3] Total

Fuel treatments 16 2 18 18 4 22
Suppression (ground crews) 46 4 50 66 8 74
Suppression (helicopters) 14 2 16 15 4 19
Fire stations 5 1 6 6 1 7

Investment balance (%) Bdgt Prt (%) Investment balance (%) Bdgt Prt (%)

Fuel treatments 88 12 12.7 81 19 12.8
Suppression (ground crews) 92 8 87.3 89 11 87.2
Suppression (helicopters) 87 13 78 22
Fire stations 83 17 86 14

Table 4  Budget allocation 
decisions in 1 (Winter) and 
3 (Spring) for an escaped 
fire extended cost (EFeC) of 
4000 M (values in thousands 
of euros, M)—for branches 
starting with 2–5, please see 
Table A7

Portfolio options Volatility

Low High

Winter Spring Total Winter Spring Total

Fuel treatments 1600 208 1808 1900 416 2316
Suppression (ground crews) 2244 275 2519 2772 549 3321
Suppression (helicopters) 0 0 0 0 0 0
Fire stations 40 8 48 48 8 56
Suppression total 2284 283 2567 2820 557 3377
Total (prevention + suppression) 3884 491 4375 4720 973 5693
Ratio (suppression/prevention) 1.43 1.36 1.42 1.48 1.34 1.46

Table 5  Budget allocation 
decisions in 1 (Winter) and 
3 (Spring) for an escaped 
fire extended cost (EFeC) of 
12,000 M (values in thousands 
of euros, M)—for branches 
starting with 2–5, please see 
Table A8

Portfolio options Volatility

Low High

Winter Spring Total Winter Spring Total

Fuel treatments 1600 208 1808 1800 416 2216
Suppression (ground crews) 1012 92 1104 1452 183 1635
Suppression (helicopters) 9800 1456 11,256 10,500 2912 13,412
Fire Stations 40 8 48 48 8 56
Suppression total 10,852 1556 12,408 12,000 3103 15,103
Total (prevention + suppression) 12,452 1764 14,216 13,800 3519 17,319
Ratio (suppression/prevention) 6.78 7.48 6.86 6.67 7.46 6.82
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II. How volatility in the demand and EFeC influence 
the optimal budget

Dispatch class 2 is more effective than dispatch class 
1 (please see the escape probability in supplementary 
Table A3) but has a higher cost (744 M vs 132 M), as it 
involves the hiring of one helicopter (1 × 700  M) and 
two ground crews (2 × 22 M) instead of six ground crews 
(6 × 22 M). In addition, the increased spatial flexibility of 
the helicopter, to be useful, must be compensated by the 
presence of other ground crews, spread by the area it covers, 
because the helicopter cannot work alone (from the dispatch 
class 2 definition, in Table 1).

From C4 to C12, the EFeC increases enough to justify 
contracting helicopters (in order to use dispatch class 2), 
and, as observed in Table 6, the optimal budget increases 
also (in about the same-triple-proportion). An increase in 
the volatility also has a significant impact on the optimal 
budget—in C4 the expected value of the optimal budget 
increases 22.6%, and in C12 it increases 12.3%, from the 
low to the high-volatility instance.

III. How volatility in the demand and EFeC influence 
the investment mix

A similar pattern is observed in branch 2–5 (please see sup-
plementary Table A7 and Table A8), for which the propor-
tion of investment postponed to the Spring in C4 is 14.3% 
and 25.5% for the lower and higher volatility, respectively. 
The postponement ratio of 1.79 also increases to 2.05, from 
C4 to C12, as the total investment grows from 3439 M 
to 10,832 M for the lower volatility, and from 3821 M to 
10,551 M for the higher volatility.

The postponements of the commitments to each type 
of capacity, fuel treatments, and suppression preparedness 
(ground crews, helicopters, and temporary fire stations) have 
about the same ratio, respectively 1.56 and 1.50 in C4(1–3), 
1.86 and 1.74 in C4(2–5), 1.63 and 1.64 in C12(1–3), and 

1.99 and 2.06 in C12(2–5). However, looking at the portfo-
lio with more detail (please see supplementary Fig. A2)—
except for temporary fire stations (please see Fig. A3 and 
supplementary Note A1, right below)—higher volatility 
and then higher EFeC cause increasing differences in the 
investment postponement within the suppression options. 
Increasing uncertainty about fire locations (volatility) with 
an EFeC that justifies contracting helicopters, which have 
more spatial flexibility and efficacy although at an increased 
cost, leads to a higher postponement in the commitment to 
their acquisition.

Unlike ground crews and helicopters, fuel treatments do 
not feature spatial flexibility directly, because their effect is 
restricted to the region where they are applied. In addition, 
consisting of increasing the probability of containment by 
initial attack (see Table A3), their effect is only realized 
through the deployment of suppression efforts. This inter-
action, jointly with the fact that dispatch class 2 also brings 
together the two types of suppression resources, greatly 
complicates the relationships between the different portfo-
lio options.

In fact, although the number and location of fuel treat-
ments are sensitive to volatility (Fig. 8), their proportion of 
the annual budget remains constant. Almost in opposition, 
the number and location of fuel treatments are fairly insensi-
tive to the EFeC, but their proportion in the annual budget 
decreases more than 2/3 from C4 to C12 (from about 41% 
to 13%), as a consequence of the shift from no investment 
to a large investment in helicopters.

Suppression resources are highly sensitive to changes in 
the EFeC. Indeed, ceteris paribus, increasing EFeC from 
C4 to C12, the number of ground crews (Table 2, Table 3, 
Table A1 and Table A2) is reduced to about half (44–57% 
reduction) but their weight in the budget (Tables  4, 5, 
Table A7, and Table A8) is reduced from 58% to about 1/7 
to 1/5 (13–21%) of the total budget—a proportion roughly 
1/3 lower.

Table 6  Summary of total 
budget (please see Table s4 and 
5, Table A7, and Table A8). 
“Vlt” and “var” stand for 
volatility and variation, 
respectively. All values are in 
thousands of euros

Branch EFeC EFeC (var) Vlt (var)

4,000 M 12,000 M C4–C12 Low–High

Low High Low High Low High C4 C12

2–6 2948 2848 9068 7032 3.1 2.5 1.0 0.8
2–5 3439 3821 10,832 10,551 3.2 2.8 1.1 1.0
1–4 3884 4720 12,452 13,800 3.2 2.9 1.2 1.1
1–3 4375 5693 14,216 17,319 3.2 3.0 1.3 1.2
0–2–5 3326 3713 10,484 10,282 3.2 2.8 1.1 1.0
0–1–3 4262 5585 13,868 17,050 3.3 3.1 1.3 1.2
0 (fall) 2836 2740 8720 6763 3.1 2.5 1.0 0.8
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However, from lower to higher volatility, ceteris paribus, 
despite the increase in the number of total ground crews 
(13% and 32% in C4, and 38% and 48% and C12, respec-
tively for 2–4 and 1–3), the proportion of the budget allo-
cated to ground crews is quite stable, about 58% and 10% 
(8–12%, more precisely) of the optimal budget, in C4 and 
C12, respectively. In C12, almost unresponsive to volatility, 
helicopters absorb 77% of the optimum budget (74–79%).

The suppression/prevention budget ratio (Table  4, 
Table 5, Table A7, and Table A8) grows nearly five times, 
from 1.46 in C4 to 6.71 in C12, while remaining almost 
insensitive to changes in volatility.

Investment mix and socioecological contexts

The length of the fire season is increasing in several regions 
worldwide (Fischer et  al. 2016) and, as referred before 
(“Introduction” section), decision-making processes need to 
be framed in terms of the relative magnitude of uncertainties 
and the response options available for each particular con-
text. The context relates to fire regimes, policy (e.g., relative 
cost of fire suppression), and the values at risk—e.g., the 
extent of the WUI, forested areas (and the type of terrain 
where they are), degree of economic dependence on forest 
resources, or existence of protected natural parks (Thompson 
et al. 2017). In this subsection, we study the sensitivity of the 
portfolio mix to changes in the values at risk, expressed as 
different EFeC values, i.e., how the optimal budget balance 
(between prevention and suppression) reacts to increases in 
EFeC.

We found that the prevention/suppression balance 
changes smoothly within four regions, limited by �1 , �2 , and 
�3 , but features leaps at these EFeC thresholds. The regions 

(A, B, C, and D, in supplementary Table A11), or system 
stages, reflect qualitative changes in the system equilibrium. 
Furthermore, the change in weather volatility considered in 
our analysis did not affect system stages (supplementary 
Table A11 and Fig. A4), as the threshold values remained 
exactly the same—in our test landscape, 169, 960, and 6490 
(€/ha or M/cell), respectively. The leaps were, however, 
more abrupt with the lower volatility (e.g., at �2 , from 959 
to 960, the suppression budget falls from 100 to 67% with 
the lower volatility, whereas with the higher volatility, it falls 
to 82%, reductions of 33 and 18% respectively). It should 
be noted that values higher than 6490 are not unreachable. 
Indeed, at the WUI, they can be far larger: e.g., the reported 
losses in the recent Pedrogão Grande fires (CCDRC 2017), 
mentioned in “Model proof of concept” section above, are 
of about €10,804/ha (€1.08/m2).

A global view of the system equilibrium qualitative 
behavior changes, as the hectare value or the escaped forest 
fire losses (M) rise, for the high-volatility scenario, is pro-
vided above, in Fig. 9, with the horizontal axis consisting 
of log-transformed values (base 2), to provide visibility to 
the first stage. A similar overview without log-transformed 
values is provided in supplementary Fig. A5, with the detail 
for values below 1600, presented in supplementary Fig. A6. 
The complete results for the lower and higher volatility cases 
are provided in supplementary Table A11.

These qualitative stage changes are caused by a rational 
successive inclusion of available options in the portfolio 
mix, as soon as they become economically efficient. It is 
worth noting that the order of inclusion—dispatch class 1, 
fuel treatments, dispatch class 2—does not follow the intrin-
sic cost of the options—the cost of treating one location, and 
the costs of the resources needed to use dispatch class 1 and 

Fig. 8  Spatial view of the cells chosen for the application of fuel 
treatments in winter and spring, in the two branches of the test land-
scape, for a low and a high volatility in the set of fire scenarios, 

with a fire escape extended cost of 4 and 12 thousands euros (see 
Table  A10, for the number of fuel treatments and percentage of 
treated cells)
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2, start at (Table 1) 100 M, 140 M ( 6 × 22 M + 1 × 8 M ), 
and 752 M ( 1 × 700 M + 2 × 22 M + 1 × 8 M ), respectively. 
As observed previously, the interactions between the options 
complicate this analysis.

In the lowest system stage (or region), for an EFeC < 𝛿1 , 
which we call it “let burn,” the optimal expected budget is 
zero because no positive portfolio mix of investments is low 
enough to be compensated by the decrease in escape costs, 
i.e., the optimal investment in both prevention and suppres-
sion options is zero. The second stage, until �2 ( 

[

�1, �2
[

 ), has 
a positive optimal budget, 100% allocated to suppression 
(ground crews and temporary fire stations), and we name 
it “no prevention.” Next, in the third stage ( 

[

�2, �3
[

 ), which 
we call “prevention focus,” prevention jumps from 0 to 33% 
(18%) and grows smoothly until 43% (41%) for the lower 
(higher) volatility, while suppression falls from 100 to 67% 
(82%) and continues to fall to 57% (59%). Indeed, at �2 , fuel 
treatments start to pay-off with the decreased escape prob-
ability they provide.

Finally, in the last stage, termed “suppression domi-
nance,” for an EFeC ≥ �3 , the value lost with the burnt area 
is sufficiently high to justify investing in helicopters. Con-
sequently, prevention drops, for the lower (higher) volatil-
ity, from 43% (41%) to 35% (34%) and then smoothly falls 
to 12% (12%), while suppression jumps from 57% (59%) 
to 65% (66%) and continues rising until about 88% (88%). 
However, despite the low and decreasing proportion of the 
prevention budget, its absolute value remains quite stable: 
1382 and 1465 for the lower and higher volatility, respec-
tively. We emphasize the enduring importance of fuel treat-
ments (above the �2 threshold), in the face of the dominance 

of fire suppression policies in contemporary fire manage-
ment (Schoennagel et al. 2017). Fire management in Europe, 
e.g., is still strongly focused on fire suppression (Fernandes 
et al. 2016), in spite of the, now well understood, impacts of 
fire suppression on fuel build-up (Schoennagel et al. 2017). 
In Portugal, expenditures with firefighting are three times 
larger than expenditures with fire prevention, fuel manage-
ment, and pre-suppression (Mateus and Fernandes 2014), 
i.e., suppression accounts for 75% of the total budget avail-
able for FFM.

The stages also reflect shifts in behavior for the expected 
burnt area. The investment in the portfolio increases (with 
decreasing gains) up to a point at which further investments 
cost more than the avoided escaped fires. So, there is always 
a probability distribution for a certain number of escaped 
fires and thus for burnt area associated with the optimal 
portfolio mix. Unless society is willing to pay a suboptimal 
price, there will always exist some (positive) expected burnt 
area.

In the case of our test landscape, for the higher volatility, 
along the four regions (Fig. 10), the expected proportion of 
escaped fires goes from being always 100%, to a variation 
from 88.9 to 24.2%, then from 19.9 to 11.5%, and finally 
from 10.7 to 2.4% (achieved at an EFeC of 50,000 M). Simi-
larly, the expected burnt area is at first always 8.6% and 
then goes from 7.6 to 2.1%, from 1.7 to 1.0%, and from 0.9 
to 0.20%. The thresholds are included in Table 7 (values in 
supplementary Table A11). In our model, burnt area and 
escaped fires have a linear relationship. For this reason, with 
the appropriate scales, the two lines displayed in Fig. 10 

Fig. 9  Global system behavior (high volatility) and stages (let burn, 
no prevention, prevention focus, and suppression dominance) accord-
ing to the hectare value or escaped forest fire loss (M)—please see 

supplementary Table A11; horizontal axis with log-transformed val-
ues (base 2)—for a similar overview without log-transformed values, 
please see supplementary Fig. A5)
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would be the same—in order to improve readability, we 
show them separate.

An actual landscape can exhibit one (or more) of the 
stages we identified, depending on the relationships between 
its values at risk, the cost, effectiveness, and spatial flex-
ibility of the suppression resources in each dispatch class, 
and the cost and effectiveness of the fuel treatments. In the 
face of a (rational) optimal portfolio that leads to a number 

of expected escaped fires (and burnt area) considered to be 
excessive according to some point of view, policies can be 
designed in order to change the status quo. These policies 
can assume forms such as direct subsidization, market regu-
lation, or consent to suboptimal fire responses.

These successive stages can also be seen as a ladder of 
ascending value. At the top of such value ladder will cer-
tainly be the WUI with its associated higher fire protection 

Fig. 10  Socioecological context and changes in the percentage of landscape burnt and escaped fires (high volatility), as EFeC rises (values in 
supplementary Table A11—horizontal axis with log-transformed values (base 2)

Table 7  Characterization of test landscape system stages and connected socioecological contexts, with their values at risk and policy concerns

a Lower volatility values within brackets
b At an EFeC of 50,000 (20,000)
c Cultural heritage, ecological values, and others

System stages (EFeC thresholds)

Let burn
< 𝛿1

No prevention
[

�1, �2

[

Prevention focus
[

�2, �3

[

Suppression dominance
≥ �3

Fuel treatments No No Yes Yes
Ground crews No Yes Yes Yes
Helicopters No No No Yes
Escaped  firesa (%) 100 88.9–24.2 (22.6) 19.9 (14.6)–11.5 (10.8) 10.7 (10.2)–2.36b

Landscape  burnta % 8.6 (9.7) 7.6–2.1 (2.2) 1.7 (1.4)–1.0 0.9 (1.0)–0.20 (0.23)b

Socioecological contexts

Shrubland Abandoned forest Planted forest (stands) WUI and forest reserves

Values at risk ordered list 
(suggestion)

Forest biomass
Recreational activities

Indirect use
Pellets
Pulpwood

Timber products
Non-timber products
Forest prod. and services
Birch logs
Sawlogs

Non-market  resourcesc

WUI related values
Human lives

Policy concerns Promote mix with more 
valued activities

Wood prices Aerial resources ineffective 
utilization

“Firefighting trap” (Col-
lins et al. 2013)
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costs, requiring restrictions to further residential growth 
in fire-prone landscapes, a policy that is harder to imple-
ment today, but promises to yield future benefits to society 
(Schoennagel et al. 2017). Also, as in many temperate for-
est ecosystems, fire has a critical role and is an essential 
ecological process in order to preserve native plants and 
wildlife diversity (Fischer et al. 2016), a context that we 
can associate to the bottom of this ladder. In between these 
extremes, there may exist other system stages, that can be 
associated with particular (local) contexts, altogether call-
ing for the rational utilization of resources and the design 
of contextual policies.

The optimal response is always context dependent, and 
indeed, our results challenge some popular “one-size-fits-all” 
ideas, e.g., (a) investing in prevention is always worthwhile, 
(b) the proportion of the fire budget spent with fuel treat-
ments should always be at least one-third, (c) the utilization 
of helicopters is always a waste, and (d) the idea that large 
fires can be totally eradicated. The fact that at the bottom of 
the ladder (“let burn”) it does not make sense to invest in any 
kind of option (even suppression) challenges (a), the budget 
allocated to fuel treatments varies significantly, featuring 
proportions both above and below the one-third referred in 
(b), the utilization of helicopters in the upper stages chal-
lenges (c), and in order to achieve (d), society must be will-
ing to pay a suboptimal price, as referred above.

Using our test landscape as an application exercise, we 
can relate the observed stages with different socioecological 
contexts (Table 7) in Portugal. “No prevention” can be asso-
ciated with the “abandoned forest” (typical of the center and 
north of Portugal, where most forest, and old agricultural 
lands now forested due to rural abandonment, is divided 
among numerous small owners), “prevention focus” with the 
“planted forest” (owned or rented, but managed by compa-
nies for timber production), and “suppression dominance” 
with the WUI, because of the related EFeC high values. In 
line with the analysis described in the next paragraph, and 
although Portuguese law requires every fire to be fought, we 
relate “let burn” with shrublands (distant from populated 
areas).

In order to assign the assets presented in Table 7 (bottom) 
to each stage, we used Netto (2008) and Pinto et al. (2013) 
for the valuation of “forest biomass”, AFN (2011) for the 
overall “losses in (forest) products and services” (€1435/
ha), and ISA (2005) for the “value losses” in “timber prod-
ucts” (€917/stand-ha), “non-timber products” (€1045/stand-
ha), “recreational activities” (€47/forest-ha), and “indirect 
use” (€191/forest-ha)—all in 2017 values, accounting for 
the official inflation rate (PORDATA 2017). The values for 
the other assets in the first three stages (pellets, pulpwood, 
birch logs, sawlogs) were obtained in Sathre and Gustavsson 
(2009) and FOEX (2017) price indices. For the last stage, we 
chose to list the value of “non-market resources” (cultural 

heritage, ecological values, and others) below the losses 
in “WUI related values” and “human lives” (above all). A 
final note concerns “timber products”, whose current value 
is slightly above �2 , but can sometimes, according to experts, 
be below. For this reason, we chose to classify “pulpwood” 
(“timber products”) as the asset with higher (lower) value in 
the second (third) stage.

The optimal investment mix in some of the system stages 
resembles some behaviors actually observed in Portugal. A 
wood price below �2 can justify why small forest landowners 
implement no fire mitigation actions (e.g., fuel treatments). 
The sometimes criticized investment in aerial suppression 
resources can be understood in the face of the extension of 
the WUI in the country, and more broadly also explain part of 
the observed increase in suppression costs worldwide, related 
to the high costs of protecting the WUI from the increasing 
number of fires, due to global warming.

Schoennagel et al. (2017) stress the difficulties in recogniz-
ing and addressing significantly the impacts of wildfires on 
ecosystems and society, aggravated by gradual (but significant) 
changes in climate, fuels, and the WUI, and often worsened 
by a lack of political will to change ineffective long-standing 
policies and implement new policies with long-term value but 
short-term costs. Nevertheless, society has a unique oppor-
tunity to change the course of its response to wildfires and 
related policies, in the face of the projected global warming 
for the coming decades.

Our imaginary region (the test landscape) provides an 
example of how the model can be used to raise awareness to 
some deficits in system governance and support the design 
of new policies. In the bottom row of Table 7, we provide 
some examples of such “policy concerns”, focused on plac-
ing assets in the appropriate stage of the ladder of value, or 
avoiding inappropriate, out-of-context, suppression options. 
For instance, desirable (isolated) economic activities with a 
value so low that they do not even justify suppression could 
benefit from policies to promote their mix with other valuable 
activities, to reinforce the area’s value at risk (e.g., promoting 
forest biomass exploitation together with pulpwood or recrea-
tional activities in national parks). Market regulation (or direct 
subsidization) policies can prevent the values of some timber 
products from falling below �2 and thus favor the option to 
invest in fuel treatments. The observed inappropriate utiliza-
tion of aerial resources in stages below the upper stage (WUI 
and forest reserves) can also be avoided. In addition, at that 
upper stage, the “firefighting trap” of a suppression focused 
policy (Collins et al. 2013), where apparently sound manage-
ment can result in several unintended consequences, is a major 
concern. Finally, it should be noted that, in some cases, poli-
cies can be designed to protect some assets at a suboptimal 
price, by supporting investment options that in normal condi-
tions would be avoided (e.g., the utilization of aerial resources 
to protect the “let burn” stage).
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Conclusion

In this paper, we used a stochastic MIP model grounded 
in the literature, considering options related to fuel treat-
ments and fire suppression, and weather variability and 
micro-scale factors, as sources of uncertainty, to show how 
an integrated intra-annual FFM can lead to a cost-effec-
tive budget allocation. We focused our analysis on mis-
match risk, addressing two types of flexibility (investment 
postponement and spatial flexibility) and analyzing, first 
(“Investment mix, volatility, EFeC , and flexibility” sec-
tion), how the optimal investment mix responds to weather 
volatility and the values at risk (EFeC), through system-
endogenous flexibilities, and then (“Investment mix and 
socioecological contexts” section), how the optimal budget 
composition changes as the values at risk rise.

We found that (1) the value of postponement flexibility 
is evidenced in scenarios of increased uncertainty (higher 
volatility) and at a higher EFeC, to the point of almost 
40% of the total optimum budget being postponed to the 
next decision node; (2) the optimum budget is affected 
by changes in demand volatility (impacting also the spa-
tial solution) and is sensitive (but not proportionally) to 
changes in EFeC; and (3) the number and location of fuel 
treatments are sensitive to volatility, but their proportion 
of the annual budget remains constant, being fairly insensi-
tive to changes in the EFeC (but impacting their proportion 
in the annual budget); suppression resources are sensi-
tive to changes in the EFeC and in the volatility (without 
affecting the proportion of the budget allocated to ground 
crews); and the suppression/prevention budget ratio is sen-
sitive to changes in the EFeC, and almost insensitive to 
changes in volatility—e.g., if climate change is leading to 
an increase in weather volatility, the optimal budget and 
the proportion allocated to each of the feasible options 
will be affected, namely the number and location of fuel 
treatments and the number of suppression resources (but 
not the suppression/prevention budget ratio), and the post-
ponement of capacity investment will play an important 
role. Thus, policy makers should introduce this kind of 
flexibility in the design of the system.

The finding, in “Investment mix, volatility, EFeC , and 
flexibility” section, that the optimal budget and the pro-
portion of the budget allocated to each option are highly 
sensitive to changes in the values at risk, was exhaustively 
explored in “Investment mix and socioecological contexts” 
section. For the instances that we analyzed, we found that the 
changes in budget composition and total value occur along 
four qualitative system stages that can be related to specific 
socioecological contexts and used as the basis for policy (re)
design. Furthermore, even if—as we have seen—the invest-
ment mix changes qualitatively in the system, fuel treatments 

are always of value above a certain cost per hectare ( �2 ). 
Also, independently of how the escape cost rises, after our 
�3 threshold, the optimal absolute value of the budget for 
fuel treatments is stable, with almost no changes, the policy 
implication being that, above a certain value at risk threshold 
( �2 ), investments in fuel treatments are always needed. These 
stages and their inherent proprieties can thus be conceptually 
useful in terms of defining regions.

As solutions are spatially explicit, the model is useful 
also at the operational level and the results show that an 
integrated intra-annual FFM leads to a cost-effective alloca-
tion of the budget, which in turn, contributes to mitigating 
the losses with catastrophic fires.

We believe our model contributes to (a) a strategic and 
operational problem in forestry by representing the underly-
ing uncertainty in a solvable and tractable model; (b) that 
can be used also to help determine when and where to imple-
ment fuel treatments; and somehow (c) be used to motivate 
the interaction (and hopefully, later the coordination) of a 
set of stakeholders with individual agendas—a contribution 
to, respectively, the open problems 26, 20, and 10, in Rön-
nqvist et al. (2015).

There are apparent limitations in our model formulation, 
e.g., the fact that a fuel-treated cell does not impact its neigh-
boring cells, or that if a fire escapes, all (and only) the cell 
where the fire ignites, burns. If the former is consistent with 
the latter, the latter, in turn, at some point can be partially 
addressed in the model parametrization—as we did, when 
we assumed, in our test landscape, that an escaped fire would 
burn 20% of the cell area, and that half of the value of the 
burnt area, would be salvaged.

It should also be noticed that the application of the model 
to a real forest implies the parameterization of the probabili-
ties of the scenario tree, the ignition probability in all land-
scape cells, and the costs due to escaped fires. Defining these 
probabilities and costs with meaningful values is not an easy 
task, but can be grounded in analyses of historical data and/
or expert elicitation. However, as we have demonstrated, the 
insights obtained as the result of a “what if” approach, with 
a test landscape, can be of value.

Finally, our preliminary results, despite being based on a 
test landscape, point in promising directions. The application 
of the model to an actual landscape, in addition to removing 
this limitation, can better explore the policy implications of 
the outlined qualitative system stages. The multi-year effect 
of fuel treatments (which we included in our analysis by way 
of a simple estimation of their expected value for subsequent 
years) suggests the extension of our intra-annual model to 
a long-term inter-annual portfolio management model, as 
future work.
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